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Abstract

This study discusses findings that replicate and extend the original work of Burns and Vollmeyer
(2002), which showed that performance in problem-solving tasks was more accurate when people were
engaged in a non-specific goal than in a specific goal. The main innovation here was to examine the
goal specificity effect under both observation-based and conventional action-based learning conditions.
The findings show that goal specificity affects the accuracy of problem solving in the same way when
the learning stage of the task is observation-based as when it is action-based. In addition, the findings
show that, when instructions do not promote goal specificity, observation-based problem solving is as
effective as action-based problem solving.

Keywords: Problem solving; Skill acquisition and learning; Observation vs. intervention

1. Introduction

1.1. Case 1

A food services manager requires, for his food products, a new warming display cabinet
that can maintain a more even temperature across the shelf surfaces. The manager must first
watch the engineer install and demonstrate the new multifunctioning thermal control system,
based only on the precise temperature at which to display their food, and must then restart and
control the system himself.

1.2. Case 2

A medical research unit that is conducting a field experiment requests a blood analyzing
instrument that requires a specialized miniature air heater that must reach 380◦F within 3.5 sec.

Correspondence should be addressed to Magda Osman, Department of Psychology, University College London,
Gower Street, London WC1E 6BT, England. E-mail: m.osman@ucl.ac.uk
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A member of the research unit is assigned to examine and learn to use the new custom-built
air heater, according to the strict specifications that are outlined.

These cases have in common a precise goal that involves controlling a complex dynamic
control (CDC) system (i.e., thermal control system, blood analyzing instrument) by adhering
to specific criteria (i.e., temperature regulation). The critical distinction between these cases
is that, in the former case, learning to control the system takes place indirectly through obser-
vation, whereas in the latter the individual must learn to control the system by interacting with
it. This difference raises the question whether the execution of the specific goal (SG) is more
accurate after learning in Case 2 in which acquisition of knowledge is an interactive activity,
compared to Case 1 in which knowledge acquisition occurs indirectly through observation. It
also raises the question whether learning to control a CDC system to specific criteria benefits
an overall understanding of the system, in comparison to learning that takes place with no
specific outcome set out.

These questions have been separately addressed in studies of CDC system in problem-
solving research. Recently, studies (Burns & Vollmeyer, 2002; Vollmeyer, Burns, & Holyoak,
1996) have examined the effects on problem-solving ability when pursing a SG instruction
during learning—that is, when problem solvers are required to learn about a system while
also controlling it to a specific criterion. The evidence reveals that this kind of instruction
leads to decrements in the underlying knowledge of the structure of the system as well the
ability to control the system to criteria other than those originally trained on. This is in
contrast with problem solvers that are instructed to pursue a non-specific goal (NSG) during
learning: i.e., they simply learn about the system they are presented with. Decrements in control
performance have also been reported when learning about the control task is observation-based
(i.e., acquiring knowledge indirectly) compared to when it is procedural-based (i.e., acquiring
knowledge directly; Berry, 1991; Lee, 1995). Although the effects of goal specificity and
mode of learning (i.e., observation-based, procedural-based) on problem solving have been
examined using the same paradigm (i.e., CDC system), the two sets of findings remain
independent of each other. The present study addresses this by examining whether action is a
necessary component in the acquisition of skilled knowledge in a CDC task, as some theorists
(e.g., Berry, 1991) have argued. If it is the case that procedural-based learning is necessary for
skill learning to take place, then decrements in problem-solving ability should be found when
learning is observation-based, regardless of the specificity of the goal in which the learner is
engaged.

1.3. CDC tasks

CDC tasks have been a popular task environment for examining motivational and affec-
tive processes in complex decision making (Earley, Connolly, & Ekegren, 1989; Locke &
Latham, 2002; Vancouver, 1997), skill learning in naturalistic decision making (Brehmer,
1992; Kerstholt, 1996; Lipshitz, Klein, Orasanu, & Salas, 2001), memory and attentional pro-
cesses in problem solving (Burns & Vollmeyer, 2002; Miller, Lehman, & Koedinger, 1999;
Vollmeyer et al., 1996), and implicit learning (Berry, 1991; Berry & Broadbent, 1988; Dienes
& Fahey, 1995, 1998). The reason for this popularity is that tasks using CDC system are
dynamic learning environments. Rarely is it the case that a decision or plan that is made in
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164 M. Osman/Cognitive Science 32 (2008)

the real world is isolated from prior decisions or plans (Funke, 2001), and in this sense CDC
tasks provide a good model of actual situations in the world (Brehmer, 1992; Funke, 2001).
This makes them ideal for studying the acquisition and transfer of skill-based knowledge in
a variety of complex interactive environments (Campbell, 1988; Cañas, Quesada, Antoli, &
Fajardo, 2003; Funke, 2001).

To illustrate, a typical CDC task includes several inputs (e.g., concentration levels of salt,
carbon, and lime) that are connected via a complex causal structure or rule to several outputs
(e.g., Chlorine concentration, Oxygenation levels, Temperature; see Fig. 1). The CDC system
presented in Fig. 1 is taken from Burns and Vollmeyer’s (2002) task, which was based on a
water purification plant and will be used in the present study.

The process by which a problem solver learns about the system is revealed by the values
of the inputs that they change and the strategy that they adopt (e.g., vary all inputs at once,
vary one input on each trial, vary one input by one unit on each trial). Through this process,
problem solvers acquire knowledge about the underlying structure of the system. They do this
by monitoring the continuous feedback that they receive on the output variables that change
as a result of the interventions that they perform on the inputs. That is, by manipulating the
input values, problem solvers can then track the effects on the outputs, which enables them
to reason from cause (input changes) to effect (output changes), via acquisition of the causal
structure or the rule that relates inputs and outputs. In Burns and Vollmeyer’s (2002) example,
the input–output relations are linear, but with a constant value added to each input–output
connection.

To examine problem-solvers’ knowledge of the system, two types of measures are used.
Usually, the difference between the learning phase and the test phase of a CDC task is that,
in the latter, problem solvers are required to control the system to a criterion. In the learning
phase, the interventions on the system are designed to discover the underlying structure of the
system. In the test phase involves making critical interventions that will achieve and maintain
specific output values (i.e., the specific criterion) on each trial. Thus problem solvers are
able to demonstrate their understanding of the CDC system by applying this knowledge to
manipulate the system for the purposes of reaching a specific goal. In addition to this measure,

Water Tank System 

Inputs                      Outputs 

                   +         +2 

         +6    

                   +   -0.5 

 

                            +4 

           

Salt 

Carbon 

Lime 

Oxygenation 

Chlorine Cn. 

Temperature 

Fig. 1. Water tank system with inputs (salt, carbon, lime) and outputs (oxygenation, chlorine concentration,
temperature).
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Fig. 2. Structure test.

which is referred to as the indirect measure (Berry & Broadbent, 1987), direct measures of
knowledge examine the accuracy of problem-solvers’ understanding of the causal structure or
rule that underlies the system. This involves reporting the input–output connections (see Fig.
2; e.g., Burns & Vollmeyer, 2002; Vollmeyer et al., 1996), or the underlying rule that relates
input to output (Lee, 1995; Lee & Vakoch, 1996), or predicting the output value based on
specific input states of the system (Berry & Broadbent, 1987, 1988; Buchner, Funke, & Berry,
1995; Dienes & Fahey, 1995; Marescaux, Luc, & Karnas, 1989).

1.4. Procedural-based versus declarative-based inductive knowledge

Some researchers (Berry & Broadbent, 1987, 1988; Dienes & Fahey, 1995, 1998; Marescaux
et al., 1989) have speculated that the knowledge acquired in dynamic control tasks is incidental.
That is, learning is non-strategic, and that knowledge is acquired through direct interaction
with a CDC task, and repeated exposure to it, which leads to the development of highly
specialized specific operations (i.e., manipulating specific inputs to attain particular outputs).
The proceduralization of these operations is identified by their being efficiently executed
without concurrent conscious awareness of how they come about, and their inaccessibility to
conscious control. Dissociation, as evidenced by good performance on indirect measures and
poor performance on direct measures, support the claim that the knowledge gained in control
tasks is procedural, and inaccessible to conscious awareness (Berry & Broadbent, 1987, 1988;
Lee, 1995; Lee & Vakoch, 1996). Along with dissociations, implicit learning theorists have
shown that procedural knowledge fails to generalize beyond CDC tasks that are perceptually
and structurally similar to the original CDC task on which problems solvers were trained
(Berry & Broadbent, 1988; Dienes & Berry, 1997; Sun, Merrill, & Peterson, 2001).

Thus, Berry (Berry, 1991; Berry & Broadbent, 1987, 1988) and others (Lee, 1995; Lee &
Vakoch, 1996; Stanley, Mathews, Buss, & Kotler-Cope, 1989; Sun et al., 2001) describe control
tasks as proceduralized tasks, because knowledge acquisition and application is incidental, and
is neither regulated nor modulated by top-down declarative-based knowledge. This position
is empirically supported by Berry’s study in which, in a series of experiments, participants
were presented with observation-based learning trials (i.e., participants were presented with
the learning trials of other participants who had already taken part in the control task),
and were tested under procedural-based conditions, (i.e., they were required to control the
system to criterion through direct interaction). By so doing, Berry examined the potential
conflicts that result during the test phase from declarative processes invoked by intentional
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166 M. Osman/Cognitive Science 32 (2008)

examination of the learning environment through observation, and from procedural processes
invoked by direct interaction with the control system. Berry reasoned that the learning and
test phases would engage incongruent processes, and that there would be a failure to apply
declarative knowledge of the system acquired during learning in order to later control it in
the test phase. Consistent with this, the control performance of observation-based learners
was impaired compared to that of procedural-based learners. Berry concluded that action is a
necessary component of learning in a control task, and that, for maximal control performance,
decision-making must be tied to action early in the learning process. The distinction between
procedural-based and declarative-based learning has since been reported in a variety of CDC
tasks (e.g., Buchner et al., 1995; Lee, 1995; Lee & Vakoch, 1996).

In summary, the evidence from studies examining procedural-based learning in control
tasks suggests that the transferability of the knowledge is dependent on the mode of learning
in which knowledge acquisition takes place (i.e., observation-based, procedural-based), and
the properties of task that knowledge is being applied to (i.e., the perceptual and structural
similarity to the training task). By focusing on deliberate strategies to learn about and control
a CDC system (i.e., through observation-based learning), the incidental procedural processes
that would typically be invoked are disrupted, and the added cognitive effort that is incurred
produces poorer control performance. Thus, for successful transfer to take place, knowledge
acquisition and knowledge application require procedural based processing.

1.5. Goal specificity

CDC tasks have also been used to examine the presence of skilled rule learning and
hypothesis-testing behavior (Burns & Vollmeyer, 2002; Sweller, 1988; Vollmeyer et al., 1996).
Expertise in CDC tasks is identified by the ability to call to mind appropriate schemas (i.e.,
structures of knowledge that allow the expert to recognize a problem state as belonging to
a particular category of problem states that typically require a specialized operation). These
are developed from past experiences that can be transferred across domains (e.g., Trumpower,
Goldsmith, & Guynn, 2004). Sweller (1988) claimed that achieving expertise in problem
solving is dependent on the goal-directedness or specificity of the goal in which the solver is
engaged. When goal directed, the solver is focused on achieving a particular outcome through
means–end analysis (a method of reducing the distance between the current position in the
problem and the end state). As a result they are unable to develop a deep understanding of
the task. The process of means–end analysis interferes with the uptake of relevant knowledge
through hypothesis testing, because during learning the solver is concerned only with serving
the immediate demands of a specific goal (Sweller, 1988). Consequently, solvers are able to
solve the problem according to the specific goal they are set, but they have poor knowledge
of the general structure of that problem. By removing the goal-directed property of the CDC
task, schema-based knowledge is promoted. This is achieved by presenting NSG instructions
that are characterized as constraint free. This type of instruction is not goalless, because it
encourages exploration of the problem, and places responsibility on the problem solver to
determine the relevant properties of the CDC task. In contrast, SG instructions are constraint
orientated. Typically, they require the solution of specific outcomes, and therefore problem
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solvers are concerned with the particular operations that must be executed to achieve those
outcomes.

The effects of goal specificity on problem-solving ability were first reported by Sweller
(Sweller & Levine, 1982; Sweller, Mawer, & Ward, 1983) and have since been replicated
(e.g., Burns & Vollmeyer, 2002; Geddes & Stevenson, 1997; Miller et al., 1999; Owen &
Sweller, 1985; Sweller, 1988; Vollmeyer et al., 1996). Typically, the findings show that, when
provided with a NSG instruction, problem solvers showed better performance on direct and
indirect measures than SG-instructed problem solvers. In addition, they were able to transfer
their knowledge across a variety of contexts.

Burns and Vollmeyer (2002) offer an alternative to Sweller’s (1988) Cognitive Load theory
of the goal specificity effect. Rather than relating the effects of goal specificity to different
demands of cognitive load, the Dual Space hypothesis (Klahr & Dunbar, 1988; Simon &
Lea, 1974) describes the goal specificity effect in terms of the problem solver’s focus of
attention in the problem-solving environment. Burns and Vollemeyer claim that a problem
can be deconstructed into spaces: the rule space, which determines the relevant relationship
between inputs and outputs; and the instance space, which includes examples of the rule
being applied. Under SG instructions, the instance space is relevant because it is integral to
the goal: The solver’s attention is focused primarily on achieving a particular instantiation
of the rule and not on discovering the rule itself. Under NSG instructions, because searching
through the problem is unconstrained, both rule and instance spaces are relevant. Attention is
distributed across all relevant properties of the task, because no one instantiation of the rule is
more important that any other. In turn, searching through the rule space encourages hypothesis
testing, which leads to a richer understanding of the underlying structure of the problem (e.g.,
Burns & Vollmeyer, 2002; Geddes & Stevenson, 1997; Renkl, 1997; Trumpower et al., 2004;
Vollmeyer et al., 1996).

In summary, there is strong empirical evidence that during learning knowledge acquired
under SG instructions is only relevant for those problems that follow the same goal structure
as training, whereas knowledge gained under NSG instructions is transferable and so con-
trol performance generalizes across different set goals. Sweller’s (1988) theory claims that
the greater expenditure of cognitive effort incurred under SG instructions helps to guide the
problem solver to the problem goal, but not to a deep understanding of the problem. This po-
sition differs somewhat from the Dual Space account, which claims that SG instructions focus
attention toward specific states of the system, but away from learning about the underlying
structure that relates inputs to outputs. The superficial knowledge that is acquired during SG
instructions is in contrast with the extensive knowledge that is acquired during NSG instruc-
tion. Both theories agree that this type of instruction encourages hypothesis testing behavior,
and that it is necessary in the acquisition and application of relevant knowledge in CDC tasks.

1.6. Summary

The claims made by learning theorists studying differences between procedural and declar-
ative processing in CDC tasks conflict with those made by theorists concerned with the effects
of goal specificity on skill learning. The former approach to studying CDC tasks suggests
that the learning processes that underlie skill acquisition are bottom-up and unavailable for
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conscious inspection (e.g., Berry & Broadbent, 1988; Dienes & Berry, 1997). The latter
approach claims that top-down processes, such as hypothesis testing behavior, can be skill-
based, and that control tasks help identify factors like goal specificity, that mitigate this kind
of behavior (e.g., Burns & Vollmeyer, 2002; Sweller, 1988).

2. Present study

The principal objective of the present study was to compare the effects on control perfor-
mance of a dynamic control task when learning is observation-based with the effects when
it is procedural-based; and to establish whether this, rather than the goal specificity of the
instructions, impairs problem-solving ability. To examine this, the present study used Burns
and Vollmeyer’s (2002) water-tank system and included four conditions: two in which the in-
structions presented in the learning phase of the control task were SG (SG-action, SG-observe)
and two in which NSG instructions were presented (NSG-action, NSG-observe). If procedu-
ral processes are necessary to accurately control CDC tasks, then performance on indirect
measures for both observation-based conditions should be inferior to that of both procedural-
based conditions. If, however, hypothesis testing is a necessary component in the acquisition
of knowledge in CDC tasks, then, regardless of the mode of learning (i.e., observation-based,
procedural-based), SG learning should produce poorer performance on direct and indirect
measures than NSG learning. This is because specific goals prevent hypothesis testing behav-
ior, which is critical in the uptake of relevant knowledge in CDC tasks.

2.1. Participants

Sixty-four students from University College London volunteered to take part in the exper-
iment and were paid £4 for their participation. Because participants in the observation-based
learning conditions were yoked to a participant from the action-based learning conditions,
the action-based conditions were run first. Participants were randomly allocated to one of
two conditions (NSG-action, SG-action) and, when these conditions were run, a second ran-
domization procedure was used to allocate participants to one of the two observation-based
learning conditions (NSG-observe, SG-observe), with 16 in each of the four conditions. Par-
ticipants were tested individually and were presented with a fully automated version of Burns
and Vollmeyer’s (2002) water purification system, which was run on Dell Optiplex computers.
The experimental program was written in Visual Basic 6.

2.2. Materials

The study was based on Burns and Vollmeyer’s (2002) water purification system. This
involved three inputs (Salt, Carbon, Lime) and three outputs (Chlorine Concentration, Tem-
perature, Oxygenation). The input–output relations are depicted in Fig. 1. At the beginning
of each trial during the learning phase, and both tests of control, the starting values of the
inputs were set to 0, and the values of the outputs were Chlorine Concentration = 500 units,
Temperature = 1,000 units, and Oxygenation = 100 units.
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2.3. Design

The present study included two types of goal specificity instructions (NSG, SG) and two
modes of learning (action, observation), for a total of four conditions (NSG-action, SG-action,
NSG-observe, SG-observe). Participants were presented with a learning phase that was divided
into two short blocks, each with six trials. After the end of each block, participants were given
a structure test in which they were asked to report what the causal structure of the CDC system
was. After this, participants were presented with a test phase (Control Test 1, Control Test
2). The difference between conditions was in the instructions received (NSG, SG), and in the
method (action, observation) by which learning took place during the learning phase. The
effects of this were indexed using a direct measure of knowledge (Structure Test 1, Structure
Test 2) during the learning phase, and an indirect measure of knowledge (Control Test 1,
Control Test 2) during the control test phase.

2.4. Procedure

Participants were told that they would be taking part in a problem-solving task, and that
they would be given an opportunity to learn about a water purification system during the
learning phase of the task. They were also told that their knowledge of the system would be
examined during the learning phase, and that their ability to apply this knowledge would be
examined in two tests of control of the system in a later presented control test phase. The
critical differences between the four conditions included in the present study were the learning
phase, and the specificity of the instructions presented in that phase (for actual instructions
used, see the appendix).

2.4.1. Action-based CDC task version
In the learning phase, participants were presented with a computer display (see Fig. 3) with

three input variables and three output variables. The underlying structure that connects the
inputs and outputs is presented in Fig. 1.

The learning phase comprised 12 trials, which were divided into two blocks of 6 trials.
Each trial consisted of participants changing the value of any number of inputs, by using the
slider corresponding to each.1 Each slider ranged on a scale from –100 to 100 units. When
participants were satisfied with their changes to the inputs, they clicked on a button labeled
“output readings,” which revealed the values of all three outputs. When they were ready to
start the next trial, they clicked a button “next trial,” which hid the output values from view.
On the next trial, participants made their changes to the inputs, and these affected the output
values from the previous trial: thus, the effects on the outputs were cumulative from one trial
to the next. After the first block of 6 trials, participants were presented with a structure test that
was designed to index knowledge of the causal structure of the control system. A diagram of
the water system was shown on screen, and participants were asked simply to indicate which
input was connected to which output (see Fig. 2). The direction of the input–output connection
was implicit in the way that participants interacted with the CDC task, and was also indicated
in the instructions to the task, and so it was not necessary to examine the directionality of the
input–output relations, only which connections existed. After this, they began the next set of
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Fig. 3. Screen shot of water tank system.

6 trials, followed by a second structure test: At the beginning of the first trial of the second
block, the input values were set to 0 and the outputs were also reset to their respective starting
values.

The NSG-action condition was given general instructions about the CDC task and some
guidelines as to how to interact with it (see the appendix). In addition to this, the SG-action
condition was told that, from the outset, they had to learn about the system by trying to
achieve, and then maintain, specific output values (i.e., Oxygenation = 50, Chlorine CL
Concentration = 700, Temperature = 900) throughout the two blocks of the learning phase.

2.4.2. Observation-based CDC task version
With the exception that participants themselves could not manipulate input values during

the learning phase, but were instead yoked to the values chosen by a participant (hereafter
“model”) from the SG-action condition, the observation-based and action-based versions of
the learning phase were identical. Observers began by clicking a button to reveal the input
values generated by the model for the first trial. (No time limit was imposed on the time
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spent studying the input values or output values on each trial.) For example, if the model
changed the input Salt by 50 units on Trial 1, this would in turn change the output value of
Chlorine Concentration to 556 (i.e., Chlorine Concentration starting value = 500 units, +
Salt value change = 50 units, + constant added noise on input–output connection = 6 units).
The observer would also see the input Salt change by 50 units. Then, when they were ready,
participants clicked a second button to reveal the corresponding output values for that trial:
in this case, the starting values of the outputs Temperature and Oxygen remained the same,
but the corresponding output Chlorine Concentration changed to 556 units. As soon as they
were ready, participants clicked a button to indicate that they were proceeding to the next
trial: The button hid the output values from view. The participants then repeated the process
of seeing the input values, and then the corresponding changes to the output values. As in
the action-based version, after Trial 6, and after Trial 12, participants were presented with a
structure test.

The NSG-observe condition was given general instructions as to which features of the
system they should attend to when pressing particular buttons. In addition, the SG-observe
condition was told that, from the outset, they had to assess how effective the changes made to
the system were in achieving and then maintaining specific output values (i.e., Oxygenation
= 50, Chlorine CL Concentration = 700, Temperature = 900) throughout the 12 trials. The
output values that the SG-observe condition monitored, and the output values that the SG-
action condition had to achieve and maintain, were identical.

2.4.3. Test phase (Control Test 1, Control Test 2)
After the learning phase, all participants completed two tests of control. In Control Test

1, they were required to change the input values to achieve and maintain the output values
(Oxygen = 50, Chlorine concentration = 700, Temperature = 900) throughout 6 trials. For
the NSG conditions (NSG-observe, NSG-action), this test was unfamiliar, whereas the SG-
action condition had been performing exactly the same task for 12 trials in their version of the
learning phase, and the SG-observe condition had been focused on assessing how effective
the changes made to the system were in achieving and then maintaining the same output
criteria. In Control Test 2, the output values (i.e., Oxygen = 250, Chlorine Concentration =
350, Temperature = 1,100) that participants had to achieve and maintain for 6 trials were
unfamiliar to all four conditions. Thus, for the SG conditions, but not for the NSG condition,
this was the first opportunity to apply their knowledge to a different goal to that on which they
had been trained.

2.5. Scoring

2.5.1. Structure Test scores
The scoring scheme used to score performance on Structure Tests 1 and 2 involved com-

puting the proportion of input–output links correctly identified for each test. A correction for
guessing was incorporated, and was based on the same procedure used by Vollmeyer et al.
(1996), which was simply correct responses (i.e., the number of correct links included, and
incorrect links avoided)–incorrect responses (i.e., the number of incorrect links included, and
correct links avoided)/N (the total number of links that could be made). The maximum value
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for each structure score was 1. This scoring scheme was applied to score performance on both
the structure tests presented during the learning phase.

2.5.2. Control Tests 1 and 2 scores
The scoring procedure used was based on Burns and Vollmeyer’s (2002) scoring system.

Control performance was measured as error scores. Error scores were based on calculating
the difference between each target output value (i.e., the criterion according to the solution
phase) and the actual output values produced by the participant, for each trial of the Control
Test. To minimize the skewedness of the distribution of scores, a log transformation (base 10)
was applied to the error scores of each individual participant for each trial.

All analyses of error scores for each control test were based on participants’ mean error
score, averaged over all six trials across all three output variables. Success in control perfor-
mance in both control tests was indexed by the difference between the achieved and target
output values. Therefore, lower error scores indicate better performance.

2.6. Results

This section begins with an analysis of performance on Structure Tests 1 and 2 (direct
measure of knowledge), and then examines participants’ ability to control the CDC task in
Control Tests 1 and 2 (indirect measure of knowledge). Finally, correlation analyses were
conducted to examine the potential relationship between indirect and direct measures of
performance. In all analyses reported in this section, a significance criterion of α = .05 was
used.

2.6.1. Structure Test scores
Fig. 4 shows that structure test scores increased across all conditions after the second block

of six trials in the learning phase. In addition, the mean structure test scores of the NSG-
action and NSG-observe conditions were higher than those of the SG-action and SG-observe
condition, indicating that the NSG conditions’ knowledge of the causal structure of the system
tended to be more accurate than that of SG conditions.

A 2 × 2 × 2 analysis of variance (ANOVA) was conducted using block (Structure Test
1, Structure Test 2) as the within-subjects variable, and goal type (NSG, SG) and mode
of learning (action, observation) as the between-subjects variables. The analysis revealed a
significant main effect of block, F (1, 60) = 14.04, MSE = .71, p < .0005; and of goal type
F (1, 60) = 11.73, MSE = 1.37, p < .001. There was no main effect of mode of learning,
F (1, 60) = .59, MSE = .07, p = .45; and no interactions were significant. Thus, the evidence
confirms the trends suggested in Fig. 4: There was increased accuracy in knowledge of the
causal structure in the second block. The evidence also indicates that differences between
conditions in performance on structure tests were the result of the specificity of the instruction
presented to participants, and not of the mode of learning.

2.6.2. Control Tests 1 and 2 scores
Fig. 5 includes the overall mean Control Tests 1 and 2 scores for each condition. Fig. 5

shows that the NSG-action and NSG-observe conditions made fewer errors in Control Tests
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Fig. 4. Mean Structure Test scores (±SE) after each block of the learning phase for each condition; the lower the
score, the better the performance. Note: NSG = non-specific goal; SG = specific goal.

1 and 2 than the SG-action and SG-observe conditions. In addition, Fig. 5 suggests that
participants made more errors in Control Test 2 than in Control Test 1. To analyze this, a 2 × 2
× 2 ANOVA was conducted to examine the patterns of behavior across conditions for Control
Test 1 and 2 scores, using test (Control Test 1, Control Test 2) as the within-subjects variable
and goal type (NSG, SG) and mode of learning (action, observation) as the between-subjects

Fig. 5. Control Test scores (±SE) at Control Test 1 and Control Test 2 for each condition; the higher the score,
the better the performance. Note: NSG = non-specific goal; SG = specific goal.
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variables. The analysis revealed a significant main effect of test, F (1, 60) = 13.55, p < .0005;
and of goal type F (1, 60) = 40.33, p < .0005. However, there was no main effect of mode
of learning, F (1, 60) = .22, p = .64; nor were any of the interactions significant. Thus, the
evidence confirms the trends suggested in Fig. 5: Control performance in Control Test 1 was
superior to that in Control Test 2. The evidence also indicates that the difference between
conditions in control performance was the result of the specificity of the instruction, and not
of the mode of learning.

2.6.3. Correlation between structure test scores and control test scores
Berry and Broadbent (1987, 1988) have argued that dissociation between performance on

direct and indirect measures of knowledge of CDC system suggests that the knowledge gained
in control tasks is procedural. The basis for this is that individuals show good control of the
system, but fail to express their knowledge when asked explicitly to report on the structure or
the underlying rule that connects inputs to outputs (Berry & Broadbent, 1987, 1988; Buchner
et al., 1995; Lee, 1995). To examine this, a correlation analysis between Structure Tests 1 and
2 scores and Control Tests 1 and 2 scores was conducted. The analysis revealed a significant
negative relationship between Structure Test 2 and Control Test 1, r(64) = –0.49, p < .005;
and between Structure Test 2 and Control Test 2, r(64) = –0.53, p < .001. This suggests that,
as performance on Structure Test 2 increased, ability to control the system also increased, as
indicated by lower control test scores. To fully explore the distinction between declarative
and procedural knowledge, the same correlation analyses were conducted separately for the
observation-based learning conditions (SG-observe, NSG-observe), and for the action-based
learning conditions (SG-action, NSG-action). Focusing only on procedural-based conditions,
the analysis revealed a significant negative relationship between Structure Test 2 and Control
Test 1, r(32) = –0.61, p < .0005; and between Structure Test 2 and Control Test 2, r(32) =
–0.46, p < .01. In the case of observation-based condition, the analysis revealed a significant
negative relationship between Structure Test 2 and Control Test 1, r(32) = –0.36, p < .05;
and between Structure Test 2 and Control Test 2, r(32) = –0.60, p < .001. The findings
from these sets of analyses strongly indicate that, for both modes of learning (observation-
based, procedural-based), there is a relationship between indirect and direct measures of
knowledge.

3. Discussion

The evidence from the present study can be summarized as follows: First, the study suc-
cessfully replicated Burns and Vollmeyer’s (2002) findings, which showed that goal speci-
ficity affects the accuracy of performance in a CDC task. Second, consistent with Burns and
Vollmeyer’s study, the goal specificity effect was located in both indexes of knowledge of the
control system (i.e., Structure Test scores, Control Test scores). Third, there was evidence of
practice effects in the structure test scores, suggesting that, from Block 1 to Block 2, greater
familiarity with the task environment in the learning phase led to increased knowledge of
the causal structure of the system. This is consistent with the findings reported in Burns and
Vollmeyer’s study. However, there was poorer performance in Control Test 2 than in Control
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Test 1, suggesting that participants found the criteria of the second control test more difficult
to reach and maintain than the first.

Fourth, in the present study the performance of both NSG conditions was superior to the SG
conditions in Control Test 1 and 2. This is particularly noteworthy given that the SG conditions
had 12 trials of prior experience in evaluating the system to the same criterion as in Control Test
1, whereas the NSG conditions had not. However, in previous studies that used similar simu-
lated systems to the present study (Burns & Vollmeyer, 2002; Vollmeyer et al., 1996) the control
performance of NSG and SG conditions in Control Test 1 was equivalent, and only in Control
Test 2 did NSG conditions show superior performance. The procedures used in the learning
phase differed slightly between the present study and Burns and Vollmeyer’s study (see foot-
note 1), which provides an explanation for the difference in findings. In the present study, the
added effort required in accurately recalling the values of all the inputs and outputs imposed
on any available resources SG condition had that would have otherwise been used to learn the
relationship between the inputs and outputs. For the NSG conditions paying close attention
to the input and output values and remembering them for the next trial favoured their method
of learning. Through hypothesis testing they had to accurately monitor the consequences of
their own/observed manipulations to the system, thus strengthening their knowledge of the
system. Therefore, despite the extra experience that SG conditions had in evaluating the sys-
tem to a criterion did not lead to the same results reported in previous studies because the
extra working memory load made learning about the system that much harder than the NSG
conditions.

Fifth, there was evidence that participants’ knowledge of the structure of the system was
related to their ability to control the system in both Control Test 1 and Control Test 2.
Moreover, this relationship was found in conditions in which learning was observation-
based as well as in conditions in which learning was action based. This result challenges
the widely held popular view (e.g., Berry, 1991; Berry & Broadbent, 1988; Lee, 1995;
Lee & Vakoch, 1996; Stanley et al., 1989; Sun et al., 2001) that CDC tasks promote pro-
ceduralized knowledge that is inaccessible to consciousness, and is therefore independent
of declarative knowledge of the CDC system. Finally, the present study provides evidence
that hypothesis testing, rather than procedural processes, is a necessary component in the
acquisition of knowledge in CDC tasks, and that SG learning produces inferior problem-
solving performance to NSG learning. Thus, the findings indicate that observation-based
learning is sensitive to goal specificity effects, and can be as effective as procedural-based
learning.

The present study provides evidence that declarative and procedural knowledge were asso-
ciated, and that procedural learning per se is not a necessary condition for the acquisition of
knowledge in a CDC task. In addition, the evidence showed that differences in performance
between action and observation-based learning conditions were the result of goal specificity
instructions, and not of how problem solvers interacted with the CDC task during learning.
Taken together, the findings from the present study raise the following questions: Why is there
a discrepancy between the present findings and previous studies of CDC tasks that show dis-
sociation between procedural and declarative knowledge? Should action be awarded a special
status in learning and problem solving? The following discussion examines issues related to
addressing these questions.
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3.1. Dissociations and associations between procedural and declarative knowledge

Funke’s (2001) recent review suggests that studies of CDC tasks have followed two separate
research histories: One has focused on decision making by experts within their domain of
expertise (e.g., Dörner, 1996; Klein, 1990; Lipshitz, 1993; Lipshitz et al., 2001; Randel, Pugh,
& Reed, 1996), whereas the other examines the development of expertise in novices (e.g.,
Berry & Broadbent, 1984, 1987, 1988; Burns & Vollmeyer, 2002; Sweller, 1998; Vollmeyer
et al., 1996). One of the many differences found between experts and novices is that, for
experts, their declarative knowledge and procedural knowledge are associated (Funke, 2001;
Glaser & Bassok, 1989), whereas for novices there is dissociation. The reasons for this
are that experts’ knowledge is closely tied to their conceptions of the goal structures of a
problem space (Glaser & Bassok, 1989), and their ability to organize specific instances of
the CDC system (i.e., input–output states of the system), by chunking them into cause–effect
sequences that relate goals to sub-goals (Sweller, 1988). Thus, one reason proposed for the
dissociation between declarative and procedural knowledge reported in novices is that they do
not acquire sufficient experience for an association to occur (e.g., Berry & Broadbent, 1987,
1988; Broadbent, Fitzgerald, & Broadbent, 1986; Glaser, 1976; Randel et al., 1996; Sternberg,
Wagner, Williams, & Horvath, 1995).

Increasing experience with CDC systems, to enhance the relationship between novices’
declarative and procedural knowledge, has been unsuccessful (e.g., Berry & Broadbent, 1987,
1988; Broadbent et al., 1986; Sanderson, 1989). However, Sanderson’s careful manipula-
tions uncovered conditions that revealed dissociations between declarative and procedural
knowledge (i.e., increased practice, graphical representations of the CDC system), but also
revealed associations (i.e., removal of problem-solver’s trial history—a record of input–output
changes on each trial during learning). The exclusion of a trial history during learning was
inspired by Berry and Broadbent’s (1984) finding. They showed that, when problem solvers
gave verbal protocols during learning, as a way of tracking the input–output changes in the
system and their hypothesis testing behavior, associations between declarative and procedural
knowledge were found. Sanderson proposed that, without a record of their interactions with
the system, problem solvers would engage in processes that were similar to those used in
providing verbal protocols. Consistent with Berry and Broadbent’s (1984) finding, Sanderson
showed that, by mentally tracking their hypothesis testing strategies, problem solvers con-
tinually updated their knowledge of the input–output relations of the CDC task. This led to
an association between declarative knowledge and procedural knowledge. However, Burns
and Vollmeyer (2002) presented their participants a trial history of their learning phase and
found an association between measures of declarative and procedural knowledge. The ev-
idence from the protocols they recorded suggested that the tests of declarative knowledge
included after the first and second block of the learning phase served as status checks. Par-
ticipants examined their knowledge of the system after the first test after the first block of
learning and used the remainder of the learning phase to modify this knowledge. Including
tests of declarative knowledge during learning may have facilitated an association between
declarative and procedural knowledge because, like Sanderson’s study, participants were
able to keep track of their knowledge of the system in order to learn to control it during
learning.
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Similarly, in the present study, problem solvers were presented with tests of their structural
knowledge during learning, and were not presented with their trial history during the learning
phase. Both these procedures may have contributed to the relationship that was found between
indirect (i.e., procedural) and direct (i.e., declarative) measures of knowledge of the system.
Moreover, the exclusion of a trial history, along with the inclusion of a measure of declar-
ative knowledge during learning may have also have contributed to the similar patterns in
performance found in observation-based and action-based learning conditions. Without a trial
history, both observation-based and action-based conditions had to keep active in memory
the input–output changes from trial to trial. They also had to carefully monitor which inputs
they were attending to, and their prediction of which outputs would be affected, and then
compare this with the outputs that were actually affected. As Burns and Vollmeyer (2002)
showed, compared to NSG instructions, attenuating hypothesis testing through SG instruc-
tions is detrimental to problem solving. Thus, in the present study, the instruction presented
to SG conditions interrupted hypothesis testing behavior during the learning phase because
participants’ attention was focused only on recalling specific input–output instances that were
relevant to the specific goal they had to reach and maintain (e.g., Buchner et al., 1995; Dienes
& Fahey, 1998).

By extension, one reason for the evidence of poorer performance by observation based
learners, compared to procedural based learners in CDC tasks (Berry, 1991; Lee, 1995), is the
inclusion of trial histories during learning along with the presentation of SG type instructions
(Berry, 1991; Lee, 1995). For example, in Berry’s observation-based problem, solvers were
actively discouraged from hypothesis testing: “Subjects should be encouraged to pay attention
to the observed interaction but not be induced to use a more deliberate hypothesis testing
mode of performance” (p. 885). Similarly, in Lee’s observation-based learners were required
to learn a rule passively without undertaking any evaluative thinking. Berry’s and Lee’s active
discouragement of hypothesis testing was designed to increase control performance in later
tests of problem-solving ability because hypothesis testing involves explicit monitoring and
tracking of representations that interfere with procedural processes that are implicit (Berry
& Broadbent, 1987). In this way, Berry’s and Lee’s instruction to avoid hypothesis testing
functioned like an SG instruction and, in a similar way, produced poorer control performance
than procedural-based learners who were not given an explicit instruction to avoid hypothesis
testing.

The implication of studies showing associations between declarative and procedural knowl-
edge (e.g., Berry & Broadbent, 1984; Burns & Vollmeyer, 2002; Sanderson, 1989; Sanderson
& Vicente, 1986), along with the present study, is that mentally tracking or verbalizing one’s
hypothesis testing behavior is important in bridging declarative and procedural knowledge.
Underlying these two activities is self-monitoring (Bandura, 1991), which has been shown to
be critical in the acquisition of expertise (Bandura, 1991; Bandura & Locke, 2003; Ericsson
& Lehman, 1996; Karoly, 1993; Rossano, 2003; Stanovich, 2004). In a given problem, se-
lecting relevant information that bears on achieving a goal cannot happen without an internal
status check of ongoing problem-solving performance (Bandura, 1991; Bandura & Locke,
2003; Karoly, 1993; Rossano, 2003). Once experts are sufficiently practiced in a task, self-
monitoring is no longer needed to regulate goal relevant information, (Karoly, 1993); but it
remains active in order to modify behavior to meet potentially new task demands (Rossano,
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2003; Stanovich, 2004). In studies of CDC tasks, findings show that experts’ declarative and
procedural knowledge is associated (e.g., Funke, 2001), and that self-monitoring is necessary
in the acquisition of expertise (e.g., Bandura, 1991; Schraw, 1998). When novices are encour-
aged to adopt behaviors that are akin to self-monitoring, associations between declarative and
procedural knowledge are also found (Berry & Broadbent, 1984; Sanderson, 1989; Sanderson
& Vicente, 1986). Thus, self-monitoring of one’s behavior, its determinants, and its effects
is, for experts, an essential method of acquiring, organizing, and applying different types of
knowledge in problem-solving domains (Bandura, 1991; Bandura & Locke, 2003; Funke,
2001; Schraw, 1998).

3.2. Should action be awarded a special status in learning and problem solving?

The role of action has been strongly emphasized, not only in learning and problem-solving
research, but also in education and instructional psychology (i.e., the methods and conditions
under which instruction facilitates human learning and development). The constructivism
tradition (Anderson, 1987; Resnick, 1983, 1987; Schauble, 1990; von Glasersfeld, 1989)
asserts that action plays a crucial role for learners in constructing their own knowledge.
In an educational context, active engagement entails students examining their own ideas,
considering alternative explanations for newly taught concepts, and evaluating competing
perspectives. Some theorists (e.g., Anzai & Simon, 1979) propose that these processes are
found when “learning is by doing.” However, a constructivist perspective essentially points
to the need for instructional formats that allow for self-monitoring (e.g., Covington, 2000;
Pintrich & De Groot, 1990), which includes reflective activities such as describing, explaining,
and evaluative thinking (e.g., Covington, 2000; Zimmerman, 1990), and these need not occur
through action.

Another example in which the superior status of action over observation is emphasized is
the intention-superiority effect (e.g., Goschke & Kuhl, 1993). This refers to the phenomenon in
which items related to activities about to be completed are recalled faster and more accurately
than observed activities (Goschke & Kuhl, 1993). It has since been shown that memory of
intended actions is not only superior to that of observed actions, but also of completed actions
(Marsh, Hicks, & Bink, 1998; Maylor, Chater, & Brown, 2001; Maylor, Darby, & Della
Sala, 2000). Moreover, there is evidence that the effect is dependent on personality variables
(i.e., action-dependent vs. state-dependent dispositions) that influence self-regulation and self-
monitoring (e.g., Goschke & Kuhl, 1993; Kuhl & Beckmann, 1994; Kuhl & Goschke, 1994;
Penningroth, 2005). Penningroth showed that, for action-orientated participants who show a
tendency to reflectivity, retrieval was more proficient for intended acts than for acts that had
taken place. In contrast, there was a reversal of this effect in action-orientated participants
who show a tendency to be instinctive, spontaneous, and unreflective.

The special status that action has been awarded over observation has been proposed in
learning (e.g., Berry, 1991; Kelly & Burton, 2001; Lee, 1995), memory (e.g., Goschke & Kuhl,
1993), problem solving (e.g., Berry, 1991; Lee, 1995), and education (e.g., Anzai & Simon,
1979; Resnick 1983, 1987). This is particularly because observation is characterized as passive
and uninvolved. However, as studies of CDC tasks (e.g., Berry & Broadbent, 1984; Burns &
Vollmeyer, 2002; Sanderson, 1989) and the present study suggest, the level of involvement of
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self-monitoring during learning may be a critical factor in preserving the distinction between
action-based and observation-based learning in problem-solving environments.

4. Conclusions

The evidence convincingly replicated the goal specificity effect and demonstrated that
this effect generalized to an observation-based learning mode of problem solving. Moreover,
the evidence from this study shows that observational learning can promote successful and
accurate problem solving in a dynamic control task. In addition, it is sensitive to goal specificity
effects in the same way as action-based problem solving. Finally, the evidence suggests that it
is hypothesis testing, rather than the procedural element of control tasks, which is necessary
for the successful uptake of knowledge and its practical application in mastering a complex
system.

Notes

1. In Burns and Vollmeyer’s (2002) study, participants were shown the starting values of
input and output values before they began the task. They were also presented with their
own trial history; this included the inputs and outputs that changed on each trial. In
this experiment, participants were shown only the starting values of the input values
and not the output values, which were revealed only on the first trial, and not before.
In addition, they were not presented with a trial history that they could refer to during
the learning phase. The rationale for these changes was to encourage participants to pay
special attention to and accurately monitor and recall the effects on the outputs resulting
from the manipulations that were made to the system.
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Appendix

Standard action instructions:

You are a trainee laboratory technician working in a water filtration unit. As part of your
training you will learn to control the water tank system by managing three water quality
measures: Oxygenation; Chlorine CL concentration; Temperature. The quality measures are
known as outputs and are used to monitor three system inputs: Salt; Carbon; Lime. In the
following task you will be presented a total of 12 trials in which you will see a diagram of
the ‘Malwart’ water filtration unit which you will learn to control. You can modify the quality
measures by manipulating the amount of Salt, Carbon, or Lime inputs; this can be done by
moving the slider corresponding to the input either to the left or to the right.

NSG-action condition also received:

For each trial you should try to change one input, however this is only a recommendation
and you may choose to use a different strategy. Once you have changed the value of an input
you can then check the output levels by pressing the button labeled ‘show me readings’; this
will reveal the concentration levels of the quality measures. After you have studied these you
should press the ‘restart’ button to begin the next trial. You should try and pay close attention
to the values of the inputs you enter into the system and the output levels because this will
help you to learn about the system. Good Luck!
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SG-action condition also received:

For each trial you should try to change one input, but this is only a recommendation and you
may chose to use a different strategy. Once you have done this you can check the output levels
by pressing the button labelled ‘show me readings’; this will reveal the concentration levels
of the quality measures. After you have studied these you should press the ‘restart’ button to
begin the next trial. Your task will be to change the output levels so that Oxygenation = 50,
Chlorine CL Concentration = 700, Temperature = 900. Try to get as close to these levels as
possible, and once you have done this try to maintain these levels throughout. Good Luck!

Standard observation instructions:

You are a trainee laboratory technician working in a water filtration unit. As part of your
training you will learn to control the water tank system by managing three water quality
measures: Oxygenation; Chlorine CL concentration; Temperature. The quality measures are
known as outputs and are used to monitor three system inputs: Salt; Carbon; Lime.

In the following task you will be presented with a series of trials in which you will see a
diagram of the ‘Malwart’ water filtration unit which you will learn to control. The system is set
so that the quality measures change according to the values chosen by one of the workers of the
water plant. You will see the amount of Salt, Carbon, and Lime inputs change automatically
according to those set by the worker, this is indicated by a slider corresponding to each input
moving either to the left or the right. You will see a total of 12 trials divided into two short
sessions of 6 each.

NSG-observe condition also received:

For each trial you should watch carefully the changes to the inputs. When you have
examined the changes to the inputs you can check the output levels by pressing the button
labeled ‘Output readings.’ This will reveal the concentration levels of the quality measures.
After you have studied these you should press the ‘Input levels’ button to begin the next trial.
You should try and pay close attention to the values of the inputs that are entered and the
output levels. Good Luck!

SG-observe condition also received:

For each trial you should watch carefully the changes to the inputs. When you have
examined the changes to the inputs you can check the output levels by pressing the button
labeled ‘Output readings.’ This will reveal the concentration levels of the quality measures.
After you have studied these you should press the ‘Input levels’ button to begin the next trial.
For each trial, your task will be to assess how well the worker of the water plant successfully
achieved the following output levels so that Oxygenation = 50, Chlorine CL Concentration
= 700, Temperature = 900. Good Luck!


